Biodegradation of butyronitrile and demonstration of its mineralization by Rhodococcus sp. MTB5

نویسندگان

  • Ismailsab Mukram
  • Masarbo Ramesh
  • T. R. Monisha
  • Anand S. Nayak
  • T. B. Karegoudar
چکیده

A nitrile utilizing bacterium Rhodococcus sp. MTB5 was previously isolated in our laboratory by the enrichment culture technique. It is able to utilize butyronitrile as sole carbon, nitrogen, and energy source. Maximum butyronitrile degrading property of this strain has been investigated. Results reveal that 100, 98, and 88 % degradation was achieved for 2, 2.5, and 3 % butyronitrile, respectively. The strain is capable of growing in as high as 5 % butyronitrile concentration. A two-step pathway involving nitrile hydratase (NHase) and amidase was observed for the biodegradation of butyronitrile. Complete degradation (mineralization) of butyronitrile with the help of metabolite feeding experiment was reported. The significance of this investigation was the capability of the strain to completely degrade and its ability to grow on higher concentrations of butyronitrile. These potential features make it a suitable candidate for practical field application for effective in situ bioremediation of butyronitrile contaminated sites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp.

The psychorotrophic Rhodococcus sp. strain Q15 was examined for its ability to degrade individual n-alkanes and diesel fuel at low temperatures, and its alkane catabolic pathway was investigated by biochemical and genetic techniques. At 0 and 5 degrees C, Q15 mineralized the short-chain alkanes dodecane and hexadecane to a greater extent than that observed for the long-chain alkanes octacosane ...

متن کامل

Characterization and genome functional analysis of a novel metamitron-degrading strain Rhodococcus sp. MET via both triazinone and phenyl rings cleavage

A novel bacterium capable of utilizing metamitron as the sole source of carbon and energy was isolated from contaminated soil and identified as Rhodococcus sp. MET based on its morphological characteristics, BIOLOG GP2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate MET showed a 6,340,880 bp genome with a 62.47% GC content and 5,987 protein...

متن کامل

Bioremediation potential of a phenol degrading bacterium, Rhodococcus erythropolis SKO-1

Biodegradation of phenol is a major focus of toxic organic compound degradation by microorganisms isolated from polluted areas. An increasing number of bacteria and fungi possessing unique biodegradation capabilities have been isolated in recent years. In this study a new isolate, Rhodococcus erythropolis SKO-1, from polluted soils in the Tehran oil refinery region, is reported. Identificati...

متن کامل

Genome sequence of Rhodococcus sp. R04, a polychlorinated biphenyl

24 The genus Rhodococcus has proved to be a promising option for the 25 clean-up of polluted sites and application of a microbial biocatalyst. 26 Rhodococcous sp. strain R04, isolated from oil contaminated soil, could 27 biodegrade polychlorinated biphenyls. Here we report the draft genome 28 sequence of Rhodococcous sp. strain R04, which could be used to predict 29 genes for xenobiotic biodegr...

متن کامل

Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22.

A unique metabolite with a molecular mass of 119 Da (C(2)H(5)N(3)O(3)) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016